Chalcogenide glasses (ChGs) have recently emerged as enabling materials for building reconfigurable nanophotonic devices by employing their refractive index changes associated with photosensitive effects. In particular, the availability of low-loss… Click to show full abstract
Chalcogenide glasses (ChGs) have recently emerged as enabling materials for building reconfigurable nanophotonic devices by employing their refractive index changes associated with photosensitive effects. In particular, the availability of low-loss thin-film ChGs and the realization of high-Q microresonators provide exciting opportunities for integrated photonics. So far, the ChG photonic devices are predominately operated in the classical optics regime. In this work, we present the realization on-chip bright photon-pair quantum light sources via spontaneous four-wave mixing in a high-Q microring resonator fabricated on the newly developed ChG Ge25Sb10S65 platform. The emission wavelength of the photon-pair source can be continuously tuned across a double-free spectral range in a reconfigurable manner. Our work serves as a starting point to fully unleash the potential of exploiting ChGs for developing reconfigurable integrated quantum photonic devices.
               
Click one of the above tabs to view related content.