LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In Situ Prelithiation by Direct Integration of Lithium Mesh into Battery Cells.

Photo by sendi_r_gibran from unsplash

Silicon (Si)-based anodes are promising for next-generation lithium (Li)-ion batteries due to their high theoretical capacity (∼3600 mAh/g). However, they suffer quantities of capacity loss in the first cycle from… Click to show full abstract

Silicon (Si)-based anodes are promising for next-generation lithium (Li)-ion batteries due to their high theoretical capacity (∼3600 mAh/g). However, they suffer quantities of capacity loss in the first cycle from initial solid electrolyte interphase (SEI) formation. Here, we present an in situ prelithiation method to directly integrate a Li metal mesh into the cell assembly. A series of Li meshes are designed as prelithiation reagents, which are applied to the Si anode in battery fabrication and spontaneously prelithiate Si with electrolyte addition. Various porosities of Li meshes tune prelithiation amounts to control the degree of prelithiation precisely. Besides, the patterned mesh design enhances the uniformity of prelithiation. With an optimized prelithiation amount, the in situ prelithiated Si-based full cell shows a constant >30% capacity improvement in 150 cycles. This work presents a facile prelithiation approach to improve battery performance.

Keywords: direct integration; prelithiation direct; situ prelithiation; lithium; battery; prelithiation

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.