LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Three-Dimensional Neuromorphic Photosensor Array for Nonvolatile In-Sensor Computing.

Photo from wikipedia

In-sensor computing hardware based on emerging reconfigurable photosensors can effectively reduce redundant data and decrease power consumption, which can greatly promote the evolution of machine vision. However, because of the… Click to show full abstract

In-sensor computing hardware based on emerging reconfigurable photosensors can effectively reduce redundant data and decrease power consumption, which can greatly promote the evolution of machine vision. However, because of the complex device structures and low integration abilities, the common architectures mainly lie in two dimensions, resulting in low time and area efficiencies. Here we propose a three-dimensional (3D) neuromorphic photosensor array for parallel in-sensor image processing. It is constructed on a vertical Graphite/CuInP2S6/Graphite photosensor unit, where the directional Cu+ ion migrations after voltage pulse programming enable a reconfigurable photovoltaic effect and an in-sensor computing capability. With a memristor-like device structure, van der Waals interfaces, and a high uniformity with a low crosstalk problem, a 10 × 10 array is fabricated for intelligent image recognition. Furthermore, using a vertically stacked 3D 3 × 3 × 3 array, we demonstrate an in-sensor convolution strategy with high time and area efficiencies.

Keywords: sensor computing; sensor; three dimensional; dimensional neuromorphic; photosensor; array

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.