LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanodrug Augmenting Antitumor Immunity for Enhanced TNBC Therapy via Pyroptosis and cGAS-STING Activation.

Photo from wikipedia

Pyroptosis is a proinflammatory form of programmed cell death that results in the release of cellular contents and activation of immune responses. However, GSDME (a pyroptosis-executed protein) is suppressed in… Click to show full abstract

Pyroptosis is a proinflammatory form of programmed cell death that results in the release of cellular contents and activation of immune responses. However, GSDME (a pyroptosis-executed protein) is suppressed in many cancers. Herein, we constructed a nanoliposome (GM@LR) for codelivering the GSDME-expressing plasmid and manganese carbonyl (MnCO) into TNBC cells. MnCO generated Mn2+ and carbon monoxide (CO) in the presence of H2O2. The CO-activated caspase-3, which cleaved the expressed GSDME, converting apoptosis to pyroptosis in 4T1 cells. In addition, Mn2+ promoted maturation of dendritic cells (DCs) by the activation of STING signaling pathway. The increased proportion of intratumoral mature DCs brought about massive infiltration of cytotoxic lymphocytes, leading to a robust immune response. Besides, Mn2+ could be applied for magnetic resonance imaging (MRI)-guided metastasis detection. Taken together, our study showed that GM@LR nanodrug could effectively inhibit tumor growth via pyroptosis and STING activation combined immunotherapy.

Keywords: via pyroptosis; nanodrug augmenting; pyroptosis; augmenting antitumor; sting activation; activation

Journal Title: Nano letters
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.