MXenes are emerging 2D materials that have gained great attention because of their unique physical-chemical properties. However, the wide application of MXenes is prohibited by their high cost and environmentally… Click to show full abstract
MXenes are emerging 2D materials that have gained great attention because of their unique physical-chemical properties. However, the wide application of MXenes is prohibited by their high cost and environmentally harmful synthesis process. Here a fluoride- and acid-free physical vacuum distillation strategy is proposed to directly synthesize a series of MXenes. Specifically, by introducing a low-boiling-point element into MAX and subsequently evaporating A elements via physical vacuum distillation, fluoride-free MXenes (Ti3C2Tx, Nb2CTx, Nb4C3Tx, Ta2CTx, Ti2NTx, Ti3CNTx, etc.) are fabricated. This is a green and one-step process without any acid/alkaline involved and with all reactions inside a vacuum tube furnace, avoiding any contamination to external environments. Besides, the synthetic temperature is controlled to regulate the layered structures and specific surface areas of MXenes. Accordingly, the synthesized Ti3C2Tx MXene exhibits improved sodium storage performance. This method may provide an alternative for the scalable production of MXenes and other 2D materials.
               
Click one of the above tabs to view related content.