Transitional metal ditelluride WTe2 has been extensively studied owing to its intriguing physical properties like nonsaturating positive magnetoresistance and being possibly a type-II Weyl semimetal. While surging research activities were… Click to show full abstract
Transitional metal ditelluride WTe2 has been extensively studied owing to its intriguing physical properties like nonsaturating positive magnetoresistance and being possibly a type-II Weyl semimetal. While surging research activities were devoted to the understanding of its bulk properties, it remains a substantial challenge to explore the pristine physics in atomically thin WTe2. Here, we report a successful synthesis of mono- to few-layer WTe2 via chemical vapor deposition. Using atomically thin WTe2 nanosheets, we discover a previously inaccessible ambipolar behavior that enables the tunability of magnetoconductance of few-layer WTe2 from weak antilocalization to weak localization, revealing a strong electrical field modulation of the spin-orbit interaction under perpendicular magnetic field. These appealing physical properties unveiled in this study clearly identify WTe2 as a promising platform for exotic electronic and spintronic device applications.
               
Click one of the above tabs to view related content.