LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Seamless Staircase Electrical Contact to Semiconducting Graphene Nanoribbons.

Photo by sxy_selia from unsplash

Electrical contact to low-dimensional (low-D) materials is a key to their electronic applications. Traditional metal contacts to low-D semiconductors typically create gap states that can pin the Fermi level (EF).… Click to show full abstract

Electrical contact to low-dimensional (low-D) materials is a key to their electronic applications. Traditional metal contacts to low-D semiconductors typically create gap states that can pin the Fermi level (EF). However, low-D metals possessing a limited density of states at EF can enable gate-tunable work functions and contact barriers. Moreover, a seamless contact with native bonds at the interface, without localized interfacial states, can serve as an optimal electrode. To realize such a seamless contact, one needs to develop atomically precise heterojunctions from the atom up. Here, we demonstrate an all-carbon staircase contact to ultranarrow armchair graphene nanoribbons (aGNRs). The coherent heterostructures of width-variable aGNRs, consisting of 7, 14, 21, and up to 56 carbon atoms across the width, are synthesized by a surface-assisted self-assembly process with a single molecular precursor. The aGNRs exhibit characteristic vibrational modes in Raman spectroscopy. A combined scanning tunneling microscopy and density functional theory study reveals the native covalent-bond nature and quasi-metallic contact characteristics of the interfaces. Our electronic measurements of such seamless GNR staircase constitute a promising first step toward making low resistance contacts.

Keywords: graphene nanoribbons; seamless staircase; electrical contact; staircase electrical; contact semiconducting; contact

Journal Title: Nano letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.