LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Macroscopic Quantum Tunneling in Superconducting Junctions of β-Ag2Se Topological Insulator Nanowire.

Photo by burhanahmad_18 from unsplash

We report on the fabrication and electrical transport properties of superconducting junctions made of β-Ag2Se topological insulator (TI) nanowires in contact with Al superconducting electrodes. The temperature dependence of the… Click to show full abstract

We report on the fabrication and electrical transport properties of superconducting junctions made of β-Ag2Se topological insulator (TI) nanowires in contact with Al superconducting electrodes. The temperature dependence of the critical current indicates that the superconducting junction belongs to a short and diffusive junction regime. As a characteristic feature of the narrow junction, the critical current decreases monotonously with increasing magnetic field. The stochastic distribution of the switching current exhibits the macroscopic quantum tunneling behavior, which is robust up to T = 0.8 K. Our observations indicate that the TI nanowire-based Josephson junctions can be a promising building block for the development of nanohybrid superconducting quantum bits.

Keywords: superconducting junctions; quantum tunneling; ag2se topological; macroscopic quantum; topological insulator

Journal Title: Nano letters
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.