The performance of many technologies, such as Li- and Na-ion batteries as well as some two-dimensional (2D) electronics, is dependent upon the reversibility of stacking-sequence-change phase transformations. However, the mechanisms… Click to show full abstract
The performance of many technologies, such as Li- and Na-ion batteries as well as some two-dimensional (2D) electronics, is dependent upon the reversibility of stacking-sequence-change phase transformations. However, the mechanisms by which such transformations lead to degradation are not well understood. This study explores lattice-invariant shear as a source of irreversibility in stacking-sequence changes, and through an analysis of crystal symmetry shows that common electrode materials (graphitic carbon, layered oxides, and layered sulfides) are generally susceptible to lattice-invariant shear. The resulting irreversible changes to microstructure upon cycling ("electrochemical creep") could contribute to the degradation of the electrode and capacity fade.
               
Click one of the above tabs to view related content.