LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Correlation between Electrical Transport and Nanoscale Strain in InAs/In0.6Ga0.4As Core–Shell Nanowires

Photo by illiyapresents from unsplash

Free-standing semiconductor nanowires constitute an ideal material system for the direct manipulation of electrical and optical properties by strain engineering. In this study, we present a direct quantitative correlation between… Click to show full abstract

Free-standing semiconductor nanowires constitute an ideal material system for the direct manipulation of electrical and optical properties by strain engineering. In this study, we present a direct quantitative correlation between electrical conductivity and nanoscale lattice strain of individual InAs nanowires passivated with a thin epitaxial In0.6Ga0.4As shell. With an in situ electron microscopy electromechanical testing technique, we show that the piezoresistive response of the nanowires is greatly enhanced compared to bulk InAs, and that uniaxial elastic strain leads to increased conductivity, which can be explained by a strain-induced reduction in the band gap. In addition, we observe inhomogeneity in strain distribution, which could have a reverse effect on the conductivity by increasing the scattering of charge carriers. These results provide a direct correlation of nanoscale mechanical strain and electrical transport properties in free-standing nanostructures.

Keywords: electrical transport; 6ga0 4as; correlation electrical; in0 6ga0; strain

Journal Title: Nano Letters
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.