Porous nanosponges, percolated with a three-dimensional network of 10 nm sized ligaments, recently emerged as promising substrates for plasmon-enhanced spectroscopy and (photo)catalysis. Experimental and theoretical work suggests surface plasmon localization… Click to show full abstract
Porous nanosponges, percolated with a three-dimensional network of 10 nm sized ligaments, recently emerged as promising substrates for plasmon-enhanced spectroscopy and (photo)catalysis. Experimental and theoretical work suggests surface plasmon localization in some hot-spot modes as the physical origin of their unusual optical properties, but so far the existence of such hot-spots has not been proven. Here we use scattering-type scanning near-field nanospectroscopy on individual gold nanosponges to reveal spatially and spectrally confined modes at 10 nm scale by recording local near-field scattering spectra. High quality factors of individual hot-spots of more than 40 are demonstrated, predicting high Purcell factors up to 106. The observed field localization and enhancement make such nanosponges an appealing platform for a variety of applications ranging from nonlinear optics to strong-coupling physics.
               
Click one of the above tabs to view related content.