LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Lattice -Mismatch-Induced Ultrastable 1T-Phase MoS2-Pd/Au for Plasmon-Enhanced Hydrogen Evolution.

Photo by des0519 from unsplash

Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs… Click to show full abstract

Metallic 1T-phase transition metal dichalcogenides (TMDs) are of considerable interest in enhancing catalytic applications due to their abundant active sites and good conductivity. However, the unstable nature of 1T-phase TMDs greatly impedes their practical applications. Herein, we developed a new approach for the synthesis of highly stable 1T-phase Au/Pd-MoS2 nanosheets (NSs) through a metal assembly induced ultrastable phase transition for achieving a very high electrocatalytic activity in the hydrogen evolution reaction. The phase transition was evoked by a novel mechanism of lattice-mismatch-induced strain based on density functional theory (DFT) calculations. Raman spectroscopy and transmission electron microscopy (TEM) were used to confirm the phase transition on experimental grounds. A novel heterostructured 1T MoS2-Au/Pd catalyst was designed and synthesized using this mechanism, and the catalyst exhibited a 0 mV onset potential in the hydrogen evolution reaction under light illumination. Therefore, this method can potentially be used to fabricate 1T-phase TMDs with remarkably enhanced activities for different applications.

Keywords: phase; induced ultrastable; phase transition; hydrogen evolution; phase mos2

Journal Title: Nano letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.