LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Fully Tensile Strained Pd3Pb/Pd Tetragonal Nanosheets Enhance Oxygen Reduction Catalysis.

Photo from wikipedia

While surface strain engineering in shaped and bimetallic nanostructures offers additional variables for manoeuvring the catalysis, manipulating isotropic strain distributions in nanostructures remains a great challenge to reach higher tiers… Click to show full abstract

While surface strain engineering in shaped and bimetallic nanostructures offers additional variables for manoeuvring the catalysis, manipulating isotropic strain distributions in nanostructures remains a great challenge to reach higher tiers of the catalyst's design. Herein, we report an efficient approach to construct a unique class of core/shell palladium-lead (Pd-Pb)/Pd nanosheets (NSs) and nanocubes (NCs) with homogeneous tensile strain along [001] on both the top-Pd and edge-Pd surfaces for boosting oxygen reduction reaction (ORR). These core/shell Pd-Pb/Pd NSs and Pd-Pb/Pd NCs exhibit over 160% and 140% increases in mass activity and over 114% and 98% increases in specific activity when compared with these unshelled counterparts, respectively. Especially, the Pd3Pb/Pd NSs show the ORR mass and specific activities of 0.57 A/mgPd and 1.31 mA/cm2 at 0.90 V versus reversible hydrogen electrode, which are 8.8 (6.5) and 9.4 (9.8) times higher than those of the commercial Pd/C (Pt/C), respectively. The valence band photoemission spectra and first-principles calculations collectively show that the tensile strained Pd shell results in an upshift of the d-band-center of Pd, weakening the chemisorption of oxygenated species due to the contribution of the antibonding orbital. In addition, the Pd3Pb/Pd NSs and NCs with intermetallic core and homogeneous few layers of Pd shell can sustain at least 20 000 potential cycles with negligible activity decay and composition changes. The present work provides a new direction for the design of highly active and stable catalysts for fuel cells and beyond.

Keywords: tensile strained; fully tensile; catalysis; oxygen reduction

Journal Title: Nano letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.