LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanoscale Coordination Polymers for Synergistic NO and Chemodynamic Therapy of Liver Cancer.

Photo from wikipedia

Nitric oxide (NO) induces a multitude of antitumor activities, encompassing the induction of apoptosis, sensitization to chemo-, radio-, or immune-therapy, and inhibition of metastasis, drug resistance, angiogenesis, and hypoxia, thus… Click to show full abstract

Nitric oxide (NO) induces a multitude of antitumor activities, encompassing the induction of apoptosis, sensitization to chemo-, radio-, or immune-therapy, and inhibition of metastasis, drug resistance, angiogenesis, and hypoxia, thus attracting much attention in the area of cancer intervention. To improve the precise targeting and treatment efficacy of NO, a glutathione (GSH)-sensitive NO donor (1,5-bis[(l-proline-1-yl)diazen-1-ium-1,2-diol- O2-yl]-2,4-dinitrobenzene, BPDB) coordinates with iron ions to form the nanoscale coordination polymer (NCP) via a simple precipitation and then partial ion exchange process. The obtained Fe(II)-BNCP shows desirable solubility, biocompatibility, and circulation stability. Quick NO release triggered by high concentrations of GSH in tumor cells improves the specificity of NO release in situ, thus avoiding side effects in other tissues. Meanwhile, under high concentrations of H2O2 in tumors, Fe2+ ions in BPDB-based NCP, named Fe(II)-BNCP, exert Fenton activity to generate hydroxyl radicals (·OH), which is the main contribution for chemodynamic therapy (CDT). In addition, ·O2- generated by the Haber-Weiss reaction of Fe2+ ions with H2O2 can quickly react with NO to produce peroxynitrite anion (ONOO-) that is more cytotoxic than ·O2- or NO only. This synergistic NO-CDT effect has been proved to retard the tumor growth in Heps xenograft ICR mouse models. This work not only implements a synergistic effect of NO-CDT therapy but also offers a simple and efficient strategy to construct a coordination polymer nanomedicine via rationally designed prodrug molecules such as NO donors.

Keywords: coordination; nanoscale coordination; chemodynamic therapy; coordination polymers; cancer; therapy

Journal Title: Nano letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.