LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Emergent magnetic state in (111)-oriented quasi-two-dimensional spinel oxides.

Photo from wikipedia

We report on the emergent magnetic state of (111)-oriented CoCr2O4 ultrathin films sandwiched between Al2O3 spacer layers in a quantum confined geometry. At the two-dimensional crossover, polarized neutron reflectometry reveals… Click to show full abstract

We report on the emergent magnetic state of (111)-oriented CoCr2O4 ultrathin films sandwiched between Al2O3 spacer layers in a quantum confined geometry. At the two-dimensional crossover, polarized neutron reflectometry reveals an anomalous enhancement of the total magnetization compared to the bulk value. Synchrotron x-ray magnetic circular dichroism (XMCD) measurements demonstrate the appearance of a long-range ferromagnetic ordering of spins on both Co and Cr sublattices. Brillouin function analyses and ab-initio density functional theory calculations further corroborate that the observed phenomena are due to the strongly altered magnetic frustration invoked by quantum confinement effects, manifested by the onset of a Yafet-Kittel type ordering as the magnetic ground state in the ultrathin limit, which is unattainable in the bulk.

Keywords: state; magnetic state; emergent magnetic; two dimensional; 111 oriented; state 111

Journal Title: Nano letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.