LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Thickness-Insensitive Properties of α-MoO3 Nanosheets by Weak Interlayer Coupling.

Photo by nci from unsplash

van der Waals (vdW) materials have shown unique electrical and optical properties depending on the thickness due to strong interlayer interaction and symmetry breaking at the monolayer level. In contrast,… Click to show full abstract

van der Waals (vdW) materials have shown unique electrical and optical properties depending on the thickness due to strong interlayer interaction and symmetry breaking at the monolayer level. In contrast, the study of electrical and tribological properties and their thickness-insensitivity of van der Waals oxides are lacking due to difficulties in the fabrication of high quality two-dimensional oxides and the investigation of nanoscale properties. Here we investigated various tribological and electrical properties, such as, friction, adhesion, work function, tunnel current, and dielectric constant, of the single-crystal α-MoO3 nanosheets epitaxially grown on graphite by using atomic force microscopy. The friction of atomically smooth MoO3 is rapidly saturated within a few layers. The thickness insensitivity of friction is due to very weak mechanical interlayer interaction. Similarly, work function (4.73 eV for 2 layers (hereafter denoted as L)) and dielectric constant (6 for 2L and 10.5-11 for >3L) of MoO3 in MoO3 showed thickness insensitivity due to weak interlayer coupling. Tunnel current measurements by conductive atomic force microscopy showed that even 2L MoO3 of 1.4 nm is resistant to tunneling with a high dielectric strength of 14 MV/cm. The thickness-indifferent electrical properties of high dielectric constant and tunnel resistance by weak interlayer coupling and high crystallinity show a promise in the use of MoO3 nanosheets for nanodevice applications.

Keywords: thickness insensitivity; moo3 nanosheets; microscopy; weak interlayer; interlayer; interlayer coupling

Journal Title: Nano letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.