LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

4-(Dimethylamino)pyridine (DMAP) as an Acid-Modulated Donor Ligand for PAH Dearomatization

Photo by ryancp from unsplash

The dearomatization of naphthalene and anthracene is explored by their η2 coordination to {TpMo(NO)(MeIm)} and {TpMo(NO)(DMAP)} (where Tp = hydridotris(pyrazolyl)borate, MeIm = 1-methylimidazole, and DMAP = 4-(dimethylamino)pyridine). The DMAP and… Click to show full abstract

The dearomatization of naphthalene and anthracene is explored by their η2 coordination to {TpMo(NO)(MeIm)} and {TpMo(NO)(DMAP)} (where Tp = hydridotris(pyrazolyl)borate, MeIm = 1-methylimidazole, and DMAP = 4-(dimethylamino)pyridine). The DMAP and MeIm complexes have nearly identical redox properties and abilities to bind these polycyclic aromatic hydrocarbons (PAHs), but unlike MeIm, the DMAP ligand can be protonated at N while remaining bound to the metal. This action enhances the π-acidic properties of DMAP, resulting in greater stability of the molybdenum toward oxidation by acid. Utilizing this feature of the DMAP ligand, several new 1,2-dihydronaphthalenes and 1,2-dihydroanthracenes were prepared. Furthermore, it was found that acetals and Michael acceptors could function as electrophiles for the PAHs using the DMAP system, resulting in several new mono- and 1,4-dialkylated products.

Keywords: dmap; pyridine dmap; meim; dimethylamino pyridine; dearomatization; ligand

Journal Title: Organometallics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.