LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Designing Alkalides with Considerable Nonlinear Optical Responses and High Stability Based on the Facially Polarized Janus all-cis-1,2,3,4,5,6-Hexafluorocyclohexane

Photo by martindorsch from unsplash

The first synthesis of facially polarized all-cis-1,2,3,4,5,6-hexafluorocyclohexane (1) was a tour de force of organic chemistry and opened up new possibilities for molecular design. In view of its large facial… Click to show full abstract

The first synthesis of facially polarized all-cis-1,2,3,4,5,6-hexafluorocyclohexane (1) was a tour de force of organic chemistry and opened up new possibilities for molecular design. In view of its large facial polarization, 1 was first utilized as a complexant to design a series of organic alkalides, namely M+·1·M′– (M, M′ = Li, Na, K), in this work. The alkalide identities of these proposed species were guaranteed by their HOMOs and VIE values, as well as NBO analysis. Our computational results show that these novel alkalides possess large complexation energies and thus exhibit high stability due to the strong electrostatic interaction between the alkali-metal ions and the axial fluorine or hydrogen atoms of 1. In particular, it is revealed that these novel alkalides possess remarkably large nonlinear optical responses with the first hyperpolarizabilities (β0) up to 1.45 × 106 au. Moreover, the feasibility of using 1 to design superalkali-based alkalide and superalkalide was also examined. We hope that ...

Keywords: facially polarized; cis hexafluorocyclohexane; high stability; optical responses; nonlinear optical

Journal Title: Organometallics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.