LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Enantioselective Rhodium-Catalyzed Transfer Hydrogenation of Tetrasubstituted Olefins: Application toward the Synthesis of GPR40 Agonist MK-2305.

Photo by kellysikkema from unsplash

A highly efficient enantioselective synthesis for the potent G-protein-coupled receptor 40 agonist MK-2305 was developed. The key tetrasubstituted olefin was prepared via a stereoselective Mukaiyama aldol reaction/elimination sequence. The highly… Click to show full abstract

A highly efficient enantioselective synthesis for the potent G-protein-coupled receptor 40 agonist MK-2305 was developed. The key tetrasubstituted olefin was prepared via a stereoselective Mukaiyama aldol reaction/elimination sequence. The highly enantioselective rhodium-catalyzed transfer hydrogenation of the tetrasubstituted olefin afforded the target compound MK-2305 in excellent optical and chemical purity. The key asymmetric transfer hydrogenation proceeds in excellent yields and enantioselectivities for a variety of substrates. The superior reactivity of the tethered catalysts was revealed by NMR studies.

Keywords: transfer hydrogenation; transfer; enantioselective rhodium; agonist 2305; highly enantioselective

Journal Title: Organic letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.