Engaging allenes in transition-metal-catalyzed C-H bond activation strategy is immensely promising to access high-value scaffolds. However, such a reaction manifold remains largely elusive using cheap and sustainable ruthenium catalysis. We… Click to show full abstract
Engaging allenes in transition-metal-catalyzed C-H bond activation strategy is immensely promising to access high-value scaffolds. However, such a reaction manifold remains largely elusive using cheap and sustainable ruthenium catalysis. We disclose an unprecedented ruthenium-catalyzed (4 + 2) annulation between aromatic amides and allenylphosphine oxides, furnishing NH-free isoquinolinones in high yields. This operationally simple methodology leverages weak coordination assistance, displays high selectivity, and is amenable to the late-stage functionalization of several biologically relevant motifs.
               
Click one of the above tabs to view related content.