An electron donor-acceptor complex-enabled, nickel-catalyzed three-component net-reductive 1,2-alkylacylation of alkenes is developed. This conjunctive reductive acyl cross-coupling process obviates the use of an exogenous photocatalyst and a stoichiometric metal-based reductant,… Click to show full abstract
An electron donor-acceptor complex-enabled, nickel-catalyzed three-component net-reductive 1,2-alkylacylation of alkenes is developed. This conjunctive reductive acyl cross-coupling process obviates the use of an exogenous photocatalyst and a stoichiometric metal-based reductant, affording various synthetically useful 1,3-dicarbonyl compounds in good yields with a broad substrate scope and excellent functional group tolerance. Both alkyl and acyl electrophiles are derived from the highly abundant and readily accessible carboxylic acids, making the catalytic 1,2-dicarbofunctionalization more synthetically general and sustainable.
               
Click one of the above tabs to view related content.