LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Total Synthesis of (-)-Antroalbocin A Enabled by a Strain Release-Controlled Photochemical 1,3-Acyl Shift.

Photo by charlesdeluvio from unsplash

The first bioinspired, enantioselective, and protecting group free total synthesis of the antibacterial sesquiterpenoid (-)-antroalbocin A (1) has been achieved in 12 steps (5.4% overall yield) from dimedone. An organocatalytic… Click to show full abstract

The first bioinspired, enantioselective, and protecting group free total synthesis of the antibacterial sesquiterpenoid (-)-antroalbocin A (1) has been achieved in 12 steps (5.4% overall yield) from dimedone. An organocatalytic Robinson annulation gave rapid access to the tricyclic enone (19) as starting material for the photochemical domino process of deconjugation and sigmatropic 1,3-acyl shift. Computational data of this process indicate that the 1,3-acyl shift benefits from the highly strained 1,3-enone 8. The transformation of 8 to its bridged isomer 5 is exergonic and, therefore, enables an increased conversion compared to unstrained substrates.

Keywords: total synthesis; antroalbocin; acyl shift; acyl

Journal Title: Organic letters
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.