LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tuning the Chemoselectivity of Silyl Protected Rhamnals by Temperature and Brønsted Acidity: Kinetically Controlled 1,2-Addition vs Thermodynamically Controlled Ferrier Rearrangement.

Photo from wikipedia

An acidity- and temperature-dependent chemoselective glycosylation of silyl-protected rhamnals with alcohols has been revealed. The reaction undergoes a 1,2-addition pathway with (±)-CSA as the catalyst at rt, affording kinetically controlled… Click to show full abstract

An acidity- and temperature-dependent chemoselective glycosylation of silyl-protected rhamnals with alcohols has been revealed. The reaction undergoes a 1,2-addition pathway with (±)-CSA as the catalyst at rt, affording kinetically controlled 2-deoxyl rhamnosides. In contrast, only thermodynamically controlled 2,3-unsaturated rhamnosides are formed via Ferrier rearrangement when elevating reaction temperature to 85 °C or using CF3SO3H instead. This tunable glycosylation allows facile and practical access to both 2-deoxyl and 2,3-unsaturated rhamnosides with excellent yields and high α-stereoselectivity.

Keywords: ferrier rearrangement; temperature; silyl protected; thermodynamically controlled; protected rhamnals; kinetically controlled

Journal Title: Organic letters
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.