Promising theoretical capacities and high voltages are offered by Li-rich disordered rocksalt oxyfluoride materials as cathodes in lithium-ion batteries. However, as has been discovered for many other Li-rich materials, the… Click to show full abstract
Promising theoretical capacities and high voltages are offered by Li-rich disordered rocksalt oxyfluoride materials as cathodes in lithium-ion batteries. However, as has been discovered for many other Li-rich materials, the oxyfluorides suffer from extensive surface degradation, leading to severe capacity fading. In the case of Li2VO2F, we have previously determined this to be a result of detrimental reactions between an unstable surface layer and the organic electrolyte. Herein, we present the protection of Li2VO2F particles with AlF3 surface modification, resulting in a much-enhanced capacity retention over 50 cycles. While the specific capacity for the untreated material drops below 100 mA h g–1 after only 50 cycles, the treated materials retain almost 200 mA h g–1. Photoelectron spectroscopy depth profiling confirms the stabilization of the active material surface by the surface modification and reveals its suppression of electrolyte decomposition.
               
Click one of the above tabs to view related content.