LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Achieving High Cycling Rates via In Situ Generation of Active Nanocomposite Metal Anodes

Photo from academic.microsoft.com

The morphological control of electrochemically deposited metallic anodes, such as Li, Zn, and Mg, under high applied rates is essential for the development of high-energy-density batteries. For transportation applications, maximizing… Click to show full abstract

The morphological control of electrochemically deposited metallic anodes, such as Li, Zn, and Mg, under high applied rates is essential for the development of high-energy-density batteries. For transportation applications, maximizing high rates and high energy density is key to attaining viable customer acceleration and range expectations, respectively. In this work, the in situ generation of Mg nanocrystals allowed cycling under high rates (10 mA cm–2) and reduced temperature (0 °C) for the very first time. Through operando STEM analysis, we discovered a highly functional SEI, a first of its kind, which enabled continuous deposition and dissolution of Mg without internal shorting. The unique morphology of the deposited Mg and the functional capability of the SEI are key to future development of practical metallic Mg anodes.

Keywords: rates via; achieving high; situ generation; generation; high cycling; cycling rates

Journal Title: ACS Applied Energy Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.