LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High-Performing and Stable Wearable Supercapacitor Exploiting rGO Aerogel Decorated with Copper and Molybdenum Sulfides on Carbon Fibers

Photo from academic.microsoft.com

Herein the concomitant synthesis of a MoS2- and Cu7S4-decorated graphene aerogel is reported. The material is fully characterized and used as an active material to coat carbon fiber electrodes for… Click to show full abstract

Herein the concomitant synthesis of a MoS2- and Cu7S4-decorated graphene aerogel is reported. The material is fully characterized and used as an active material to coat carbon fiber electrodes for the fabrication of a fiber-shaped supercapacitor. The device provides excellent capacitance values warranting stable performance even under high bending angle conditions. Moreover, a photocurable resin is selected as a smart packaging material to overcome stability problems usually affecting this class of devices. It is noteworthy that superior stability is demonstrated with a retention of almost 80% of the initial capacitance after one month. Flexible supercapacitors were also coupled with third-generation solar cells to successfully demonstrate the fabrication of wearable, portable, and integrated smart energy devices.

Keywords: wearable supercapacitor; stable wearable; carbon; high performing; aerogel; performing stable

Journal Title: ACS Applied Energy Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.