LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controllable Design of Polypyrrole-Iron Oxide Nanocoral Architectures for Supercapacitors with Ultrahigh Cycling Stability

Photo from wikipedia

Polypyrrole-modified iron oxide nanomaterials have been synthesized employing a one-step hydrothermal protocol. The influence of the reaction temperature has been investigated by performing the synthesis at four different temperatures (Ppy@Fe2O3-120… Click to show full abstract

Polypyrrole-modified iron oxide nanomaterials have been synthesized employing a one-step hydrothermal protocol. The influence of the reaction temperature has been investigated by performing the synthesis at four different temperatures (Ppy@Fe2O3-120 °C, Ppy@Fe2O3-140 °C, Ppy@Fe2O3-160 °C, and Ppy@Fe2O3-180 °C). Synthesized materials exhibited an unprecedentedly peculiar morphology (star/coral reef-like architectures), induced by the presence of pyrrole in the reaction media. Full characterization of the samples revealed the critical influence of temperature on the crystallinity, textural properties and specially on (C+N)/Fe surface ratios in the materials. As-synthesized nanohybrids were integrated into electrodes to construct supercapacitor devices. A effective tuning of the electrochemical features was achieved by controlling the (C+N)/Fe ratio on the surface, strongly dependent on reaction temperature. The best electrochemical performance was reached by Ppy@Fe2O3-180 °C nanohybrid, which exhibited a re...

Keywords: controllable design; polypyrrole; iron oxide; ppy fe2o3

Journal Title: ACS Applied Energy Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.