LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Improving the Back Electrode Interface Quality of Cu2ZnSn(S,Se)4 Thin-Film Solar Cells Using a Novel CuAlO2 Buffer Layer

Photo from wikipedia

A novel buffer layer CuAlO2 (CAO) with smooth and compact surface was applied in Cu2ZnSn(S,Se)4-based (CZTSSe) solar cells to optimize back electrode interface (BEI). It is found that introduction of… Click to show full abstract

A novel buffer layer CuAlO2 (CAO) with smooth and compact surface was applied in Cu2ZnSn(S,Se)4-based (CZTSSe) solar cells to optimize back electrode interface (BEI). It is found that introduction of CAO exerts a remarkable effect on the crystalline quality of absorber and the thickness of interfacial layer Mo(S,Se)2 (MSSe) at BEI. When the thickness of CAO buffer layer was optimized to 10.6 nm, CZTSSe film exhibits preferable crystallinity with larger grains without pin holes. Also, MSSe decreases significantly to ∼244 nm, and it is smaller than that (∼463 nm) of the sample without CAO. With this interface optimization, the solar cell with 10.6 nm thick CAO shows the higher shunt resistance, lower reversion saturation current density and smaller series resistance, leading to an increase in short-circuit current density (from 26.91 to 30.66 mA·cm–2) as well as fill factor (from 46.60% to 49.93%) compared to that of the sample without CAO. As a consequence, power conversion efficiency of the corresponding ...

Keywords: solar cells; electrode interface; back electrode; buffer layer; layer

Journal Title: ACS Applied Energy Materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.