A conducting redox polymer based on PEDOT with hydroquinone and pyridine pendant groups is reported and characterized as a proton trap material. The proton trap functionality, where protons are transferred… Click to show full abstract
A conducting redox polymer based on PEDOT with hydroquinone and pyridine pendant groups is reported and characterized as a proton trap material. The proton trap functionality, where protons are transferred from the hydroquinone to the pyridine sites, allows for utilization of the inherently high redox potential of the hydroquinone pendant group (3.3 V versus Li0/+) and sustains this reaction by trapping the protons within the polymer, resulting in proton cycling in an aprotic electrolyte. By disconnecting the cycling ion of the anode from the cathode, the choice of anode and electrolyte can be extensively varied and the proton trap copolymer can be used as cathode material for all-organic or metal-organic batteries. In this study, a stable and nonvolatile ionic liquid was introduced as electrolyte media, leading to enhanced cycling stability of the proton trap compared to cycling in acetonitrile, which is attributed to the decreased basicity of the solvent. Various in situ methods allowed for in-depth cha...
               
Click one of the above tabs to view related content.