LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Reversible Interlayer Sliding and Conductivity Changes in Adaptive Tetrathiafulvalene-Based Covalent Organic Frameworks.

Photo from wikipedia

Ordered interlayer stacking is intrinsic in two-dimensional covalent organic frameworks (2D COFs) and has strong implication on COF's optoelectronic properties. Reversible interlayer sliding, corresponding to shearing of 2D layers along… Click to show full abstract

Ordered interlayer stacking is intrinsic in two-dimensional covalent organic frameworks (2D COFs) and has strong implication on COF's optoelectronic properties. Reversible interlayer sliding, corresponding to shearing of 2D layers along their basal plane, is an appealing dynamic control of both structures and properties, yet it remains unexplored in the 2D COF field. Herein, we demonstrate that reversible interlayer sliding can be realized in an imine-linked tetrathiafulvalene (TTF)-based COF TTF-DMTA. Solvent treatment induces crystalline phase changes between the proposed staircase-like sql net structure and a slightly slipped eclipsed sql net structure. The solvation induced crystallinity changes correlate well with reversible spectroscopic and electrical conductivity changes as demonstrated in oriented COF thin films. In contrast, no reversible switching is observed in a related TTF-TA COF which differs from TTF-DMTA by the absence of methoxy groups on the phenylene linkers. This work represents the first 2D COF example of which eclipsed and staircase-like aggregated states are interchangeably accessed via interlayer sliding, an uncharted structural feature that may enable applications such as chemiresistive sensors.

Keywords: conductivity changes; interlayer; interlayer sliding; reversible interlayer; organic frameworks; covalent organic

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.