The crucial role played by the solution-vapor interface in determining the growth and morphology of an organic semiconductor thin film formed by solvent evaporation has been examined in atomic detail.… Click to show full abstract
The crucial role played by the solution-vapor interface in determining the growth and morphology of an organic semiconductor thin film formed by solvent evaporation has been examined in atomic detail. Specifically, how the loss of individual solvent molecules from the surface of the solution induces solute assembly has been studied using molecular dynamics simulations. The system consisted of bis(2-phenylpyridine) (acetylacetonate)iridium(III) [Ir(ppy)2(acac)] and 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) in chloroform at 310 K. The simulations clearly indicate that (a) the system does not undergo uniform phase separation (spinodal decomposition), (b) solute aggregation initiates at the solution-vapor interface, (c) the distribution of solvent in the film is nonhomogeneous, (d) this nonhomogeneous distribution can induce preferential alignment of host molecules, and (e) a portion of the solvent likely remains trapped within the film. The work not only demonstrates the ability to directly model evaporation in atomic detail on the relevant length scales but also shows that atomistic simulations have the potential to shed new light on morphological properties of a wide range of organic semiconductor devices manufactured using solution-processing methods.
               
Click one of the above tabs to view related content.