LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultrasensitive Flexible Solar-Blind Photodetectors Based on Graphene/Amorphous Ga2O3 van der Waals Heterojunctions.

Photo from wikipedia

Flexible photodetectors (PDs) have become the latest research interest owing to their potential applications in future implantable sensors and foldable/wearable optoelectronics. Ga2O3, an emerging ultrawide band gap semiconductor, is considered… Click to show full abstract

Flexible photodetectors (PDs) have become the latest research interest owing to their potential applications in future implantable sensors and foldable/wearable optoelectronics. Ga2O3, an emerging ultrawide band gap semiconductor, is considered as the native photosensitive material for solar-blind PDs. The reported fabrication temperature of Ga2O3 films is usually above 600 °C, which hinders its practical application for flexible devices. In this work, flexible PDs based on graphene/amorphous Ga2O3 van der Waals heterojunctions are fabricated, which demonstrate promising photoresponse to solar-blind ultraviolet light. The device yields a high photo-to-dark current ratio (∼105) and large responsivity (22.75 A/W) under 254 nm light illumination, which could be ascribed to the efficient photogenerated electron-hole pair separation by the strong built-in field. Moreover, flexible PDs also show long-term environmental stability and outstanding mechanical flexibility without any encapsulation. Our work provides a new potential candidate for realizing cost-effective high-performance flexible optoelectronic applications.

Keywords: van der; graphene amorphous; based graphene; amorphous ga2o3; ga2o3 van; solar blind

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.