LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Detailed Characterization of an Annealed Reduced Graphene Oxide Catalyst for Selective Peroxide Formation Activity.

Photo by ofisia from unsplash

Recently, electrochemical hydrogen peroxide (H2O2) generation from oxygen molecules has been extensively studied. Thus far, the best peroxide activity under alkaline conditions has been reported at the surface of a… Click to show full abstract

Recently, electrochemical hydrogen peroxide (H2O2) generation from oxygen molecules has been extensively studied. Thus far, the best peroxide activity under alkaline conditions has been reported at the surface of a mild reduced graphene oxide annealed at 600 °C (mrGO-600). However, the detailed material information, such as chemical functionality and structural morphology, is unknown, which results in ambiguous debates on its catalytic active sites. To solve this problem, we intensively characterize the structure of mrGO-600 to clarify the origin of its catalytic activity. Various characterizations, including X-ray photoelectron spectroscopy, Raman spectroscopy, infrared spectroscopy, near-edge X-ray absorption fine spectroscopy, and high-resolution transmittance electron microscopy coupled with in situ infrared spectroelecrochemistry, reveal that the annealing process generates not only various hole edge defects that are related to the ring ether group but also numerous point defects that result in a small-sized disconnected graphitic carbon region. These defects are believed to form a unique atomic level configuration in mrGO-600, which enables it to facilitate high peroxide-generated activity from oxygen molecules in an alkaline electrolyte.

Keywords: graphene oxide; peroxide; mrgo 600; spectroscopy; reduced graphene; activity

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.