LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid Gas-Engineering to the manufacture of Graphene-like Mesoporous Carbon Nanosheets with Large Aspect Ratio.

Photo from wikipedia

Porous carbon nanosheets (PCNs) with large two-dimensional morphology and high porosity have emerged as an important class of 2D materials, while developing novel technology to manufacture high-quality PCNs in terms… Click to show full abstract

Porous carbon nanosheets (PCNs) with large two-dimensional morphology and high porosity have emerged as an important class of 2D materials, while developing novel technology to manufacture high-quality PCNs in terms of convenience, high output, and economic benefit remains a challenge. Herein, a rapid gas-engineering technology is developed to fabricate graphene-like mesoporous carbon nanosheets (MCNs) with large aspect ratios (>2500, length/thickness). By easy carbonization of calcium gluconate under reduced pressure, MCNs with ultrathin (~12 nm) thickness, ultra-large (>20 µm) lamella morphology, and high surface area (~1155 m2/g) are fabricated in kilogram-scale. Two-dimensional lamella morphology transformation, pore architectures, and calcium compounds transformation mechanisms are unraveled by in situ variable temperature X-ray diffraction (VT-XRD), high-resolution transmission electron microscopy (HRTEM), ex situ scanning electron microscopy (SEM), and atomic force microscopy (AFM). The key to the synthesis is the negative pressure operation, which enables the rapid gas expansion in a gas-solid system. This design relied on the gas-expansion mechanism has realized producing of high-quality MCNs via a rapid, high-throughput, and cost-effective way. Due to high surface utilization and low weight density, when served as a lightweight separator coating layer, MCNs exhibit impressive capture ability towards polysulfides and achieve a high-stability lithium-sulfur battery.

Keywords: gas engineering; carbon nanosheets; microscopy; gas; rapid gas

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.