LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Facile Synthesis of Defect-Modified Thin-Layered and Porous g-C3N4 with Synergetic Improvement for Photocatalytic H2 Production.

Photo from wikipedia

Modulating and optimizing the diverse parameters of photocatalysts synergistically as well as exerting these advantages fully in photocatalytic reactions are crucial for the sufficient utilization of solar energy but still… Click to show full abstract

Modulating and optimizing the diverse parameters of photocatalysts synergistically as well as exerting these advantages fully in photocatalytic reactions are crucial for the sufficient utilization of solar energy but still face various challenges. Herein, a novel and facile urea- and KOH-assisted thermal polymerization (UKATP) strategy is first developed for the preparation of defect-modified thin-layered and porous g-C3N4 (DTLP-CN), wherein the thickness of g-C3N4 was dramatically decreased, and cyano groups, nitrogen vacancies, and mesopores were simultaneously introduced into g-C3N4. Importantly, the roles of thickness, pores, and defects can be targetedly modulated and optimized by changing the mass ratio of urea, KOH, and melamine. This can remarkably increase the specific area, improve the light-harvesting capability, and enhance separation efficiency of photoexcited charge carriers, strengthening the mass transfer in g-C3N4. Consequently, the photocatalytic hydrogen evolution efficiency of the DTLP-CN (1.557 mmol h-1 g-1, λ > 420 nm) was significantly improved more than 48.5 times with the highest average apparent quantum yield (AQY) of 18.5% and reached as high as 0.82% at 500 nm. This work provides an effective strategy for synergistically regulating the properties of g-C3N4, and opens a new horizon to design g-C3N4-based catalysts for highly efficient solar-energy conversion.

Keywords: thin layered; defect modified; c3n4; layered porous; modified thin; porous c3n4

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.