LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the Origin of the OER Activity of Ultrathin Manganese Oxide Films.

Photo from wikipedia

There is an urgent need for cheap, stable, and abundant catalyst materials for photoelectrochemical water splitting. Manganese oxide is an interesting candidate as an oxygen evolution reaction (OER) catalyst, but… Click to show full abstract

There is an urgent need for cheap, stable, and abundant catalyst materials for photoelectrochemical water splitting. Manganese oxide is an interesting candidate as an oxygen evolution reaction (OER) catalyst, but the minimum thickness above which MnOx thin films become OER-active has not yet been established. In this work, ultrathin (<10 nm) manganese oxide films are grown on silicon by atomic layer deposition to study the origin of OER activity under alkaline conditions. We found that MnOx films thinner than 1.5 nm are not OER-active. X-ray photoelectron spectroscopy shows that this is due to electrostatic catalyst-support interactions that prevent the electrochemical oxidation of the manganese ions close to the interface with the support, while in thicker films, MnIII and MnIV oxide layers appear as OER-active catalysts after oxidation and electrochemical treatment. From our investigations, it can be concluded that one MnIII,IV-O monolayer is sufficient to establish oxygen evolution under alkaline conditions. The results of this study provide important new design criteria for ultrathin manganese oxide oxygen evolution catalysts.

Keywords: origin oer; manganese oxide; oxide films; oer activity; ultrathin manganese

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.