LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Macrophage-Membrane-Camouflaged Disintegrable and Excretable Nanoconstruct for Deep Tumor Penetration.

Photo by rgaleriacom from unsplash

The consolidation of nanovectors with biological membranes has recently been a subject of interest owing to the prolonged systemic circulation time and delayed clearance by the reticuloendothelial system of such… Click to show full abstract

The consolidation of nanovectors with biological membranes has recently been a subject of interest owing to the prolonged systemic circulation time and delayed clearance by the reticuloendothelial system of such systems. Among the different biomembranes, the macrophage membrane has a similar systemic circulation time, with an additional chemotactic aptitude, targeting integrin proteins. In this study, we aimed to establish a laser-activated, disintegrable, and deeply tumor-penetrative nanoplatform. We used a highly tumor-ablative and laser-responsive disintegrable copper sulfide nanoparticle, loaded it with paclitaxel, and camouflaged it with the macrophage membrane for the fabrication of PTX@CuS@MMNPs. The in vitro paclitaxel release profile was favorable for release in the tumor microenvironment, and the release was accelerated after laser exposure. Cellular internalization was improved by membrane encapsulation. Cellular uptake, cytotoxicity, reactive oxygen species generation, and apoptosis induction of PTX@CuS@MMNPs were further improved upon laser exposure, and boosted permeation was achieved by co-administration of the tumor-penetrating peptide iRGD. In vivo tumor accumulation, tumor inhibition rate, and apoptotic marker expression induced by PTX@CuS@MMNPs were significantly improved by laser irradiation and iRGD co-administration. PTX@CuS@MMNPs induced downregulation of cellular proliferation and angiogenic markers but no significant changes in body weight, survival, or significant toxicities in vital organs after laser exposure, suggesting their biocompatibility. The disintegrability of the nanosystem, accredited to biodegradability, favored efficient elimination from the body. In conclusion, PTX@CuS@MMNPs showed promising traits in combination therapies for excellent tumor eradication.

Keywords: ptx cus; cus mmnps; macrophage membrane; tumor

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.