A novel method for fabricating shape-controlled and well-arrayed heterogeneous nanostructures by altering the melting point of the metal thin film at the nanoscale is proposed. Silver nanofilms (AgNFs) are transformed… Click to show full abstract
A novel method for fabricating shape-controlled and well-arrayed heterogeneous nanostructures by altering the melting point of the metal thin film at the nanoscale is proposed. Silver nanofilms (AgNFs) are transformed into silver nanoislands (AgNIs), silver nanoparticles (AgNPs), and silver nanogaps (AgNGs) that are well-ordered and repositioned inside the gold nanoholes (AuNHs) depending on the diameter of the AuNHs, the thickness of the AgNF, and the heating temperature (120-200 °C). This method demonstrates the ability to fabricate uniform, stable, and unique structures with a fast, simple, and mass-producible process. For demonstrating the diverse applicability of the developed structures, high-density AgNGs inside the AuNHs are utilized as surface-enhanced Raman spectroscopy (SERS) substrates. These AgNGs-based SERS substrates exhibit a performance enhancement, which is 1.06 × 106 times greater than that of a metal film, with a relative standard deviation of 19.8%. The developed AgNP/AgNI structures are also used as nonreproducible anti-counterfeiting signs, and the anti-counterfeiting/readout system is demonstrated via image processing. Therefore, our method could play a vital role in the nanofabrication of high-demand nanostructures.
               
Click one of the above tabs to view related content.