LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Functional Kevlar-Based Triboelectric Nanogenerator with Impact Energy-Harvesting Property for Power Source and Personal Safeguard.

Photo from wikipedia

A novel shock-resistant, self-generating triboelectric nanogenerator (SS-TENG) with high-speed impact energy-harvesting and safeguarding properties was developed by assembling Kevlar fiber and conductive shear-stiffening gel. The SS-TENG with energy-harvesting property generated… Click to show full abstract

A novel shock-resistant, self-generating triboelectric nanogenerator (SS-TENG) with high-speed impact energy-harvesting and safeguarding properties was developed by assembling Kevlar fiber and conductive shear-stiffening gel. The SS-TENG with energy-harvesting property generated a maximum power density of 5.3 mW/m2 with a voltage of 13.1 V under oscillator compression and could light up light-emitting diode arrays. Owing to the energy absorption effect, the as-designed SS-TENG could dissipate impact forces from 2880 to 1460 N, showing anti-impact performance under the drop hammer impact. It also sensed the loading forces by outputting 36.4 V. Functionalized as a self-powered sensor, SS-TENG monitored various human movements and provided protection from hammer impact. Interestingly, a wearable sole array with high sensitivity and a fast response could distinguish toe in/out motions. More importantly, this functional SS-TENG presented excellent anti-impact behavior, which dissipated 94% of kinetic energy under bullet-shooting excitation. It also gathered high speed ballistic energy, which outputted a maximum power density of 3 mW/m2. To this end, this SS-TENG with a protection effect and the ability to harvest various impact energy showed promising applications in new power sources, intelligent wearable systems, and safeguard areas.

Keywords: energy; impact; teng; power; energy harvesting; impact energy

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.