LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mechanically Robust and Reprocessable Acrylate Vitrimers with Hydrogen-Bond-Integrated Networks for Photo-3D Printing.

Photo from wikipedia

Reprocessable acrylate vitrimer needs to enhance its strength to expand the application in photo-three-dimensional (photo-3D) printing. However, the methods for improving mechanical properties by the addition of nanofillers or a… Click to show full abstract

Reprocessable acrylate vitrimer needs to enhance its strength to expand the application in photo-three-dimensional (photo-3D) printing. However, the methods for improving mechanical properties by the addition of nanofillers or a multifunctional resin into acrylate vitrimers are inappropriate for photo-3D printing due to the low curing speed of photopolymerization induced by weakening light transmittance or reduction of dimensional accuracy caused by large shrinkage. At present, we demonstrate a new strategy for developing a kind of mechanically robust and reprocessable 3D printing thermosets by combining hydrogen bonds and exchangeable β-hydroxyl esters into acrylate vitrimers. To realize this purpose, diacrylate prepolymer containing β-hydroxyl esters was first synthesized from glycidyl methacrylate and suberic acid. Then, the resin formulations for 3D printing comprising the synthesized diacrylate prepolymer together with acrylamide generate exchanged β-hydroxyl ester and pendent amide in cross-linked networks. Here, hydrogen bonds resulting from the amide group as sacrificial bonds dissipate vast mechanical energy under an external load. With the inclusion of 20 wt % acrylamide, the average tensile strength and Young's modulus are up to 40.1 and 871 MPa, which increased by about 4.4 and 3.85 times, respectively. The network rearrangement of cross-linked vitrimers can be achieved through the dynamic ester exchange reactions with gradual disappearance of hydrogen bonds at elevated temperatures, imparting reprocessability into the printed structures. Various photo-3D printing or UV irradiation shapes were successfully produced, and these dissolved in ethylene glycol could be remolded again.

Keywords: photo printing; robust reprocessable; reprocessable acrylate; mechanically robust; acrylate vitrimers

Journal Title: ACS applied materials & interfaces
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.