Ultrathin Co3O4 nanosheets (NSs) with abundant oxygen vacancies on conductive carbon nanotube (CNT) nanocomposites (termed as Co3O4-NSs/CNTs) are easily achieved by an effective NaBH4-assisted cyanogel hydrolysis strategy under ambient conditions.… Click to show full abstract
Ultrathin Co3O4 nanosheets (NSs) with abundant oxygen vacancies on conductive carbon nanotube (CNT) nanocomposites (termed as Co3O4-NSs/CNTs) are easily achieved by an effective NaBH4-assisted cyanogel hydrolysis strategy under ambient conditions. The specific capacitance of Co3O4-NSs/CNTs with 5% CNT mass can reach 1280.4 F g-1 at 1 A g-1 and retain 112.5% even after 10 000 cycles, demonstrating very high electrochemical capability and stability. When assembled in the two-electrode Co3O4-NSs/CNTs-5%//reduced graphene oxide (rGO) system, a maximum specific energy density of 37.2 Wh kg-1 (160.2 W kg-1) is obtained at room temperature. Ultrathin structure of nanosheets, abundant oxygen vacancies, and the synergistic effect between Co3O4-NSs and CNTs are crucial factors for excellent electrochemical performance. Specifically, these characteristics favor rapid electron transfer, complete exposure of the active interface, and sufficient adsorption/desorption of electrolyte ions within the active material. This work gives insights into the efficient construction of two-dimensional hybrid electrodes with high performance for the new-generation energy storage system.
               
Click one of the above tabs to view related content.