LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

z-Piezo Pulse-Modulated STM Break Junction: Toward Single-Molecule Rectifiers with Dissimilar Metal Electrodes.

Photo from wikipedia

Fabricating single-molecule junctions with asymmetric metal electrodes is significant for realizing single-molecule diodes, but it remains a big challenge. Herein, we develop a z-piezo pulse-modulated scanning tunneling microscopy break junction… Click to show full abstract

Fabricating single-molecule junctions with asymmetric metal electrodes is significant for realizing single-molecule diodes, but it remains a big challenge. Herein, we develop a z-piezo pulse-modulated scanning tunneling microscopy break junction (STM-BJ) technique to construct a robust asymmetric junction with different metal electrodes. The asymmetric Ag/BPY-EE/Au single-molecule junctions exhibit a middle conductance value in between those of the two individual symmetric metal electrode junctions, which is consistent with the order of calculated energy-dependent transmission coefficient T(E) of the asymmetric junctions at EF. Furthermore, the single-molecule conductance of Ag/BPY-EE/Au decreases by about 70% when reversing the bias voltage from 100 to -100 mV, and a clear asymmetric I-V feature at the single-molecule level is observed for these junctions. This rectifying behavior could be ascribed to a different interfacial coupling of molecules at the two end electrodes, which is confirmed by the different displacement of T(E) at the two bias voltages. Other asymmetric junctions exhibit similar rectifying behavior. The current work provides a feasible way to fabricate hybrid junctions based on asymmetric metal electrodes and investigate their electron transport toward the design of molecular rectifiers.

Keywords: piezo pulse; molecule; single molecule; metal electrodes; junction

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.