LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Surface Defect Passivation and Energy Level Alignment Engineering with a Fluorine-Substituted Hole Transport Material for Efficient Perovskite Solar Cells.

Photo from wikipedia

The surface and boundary defects present in the perovskite film are reported to be nonradiative recombination and degradation centers, restricting further improvement of the power conversion efficiency (PCE) and long-term… Click to show full abstract

The surface and boundary defects present in the perovskite film are reported to be nonradiative recombination and degradation centers, restricting further improvement of the power conversion efficiency (PCE) and long-term stability of perovskite solar cells. To address this problem, herein, we introduce a fluorine-substituted small molecular material 2FBTA-1 as a bifunctional buffer layer to efficiently passivate the surface defects of perovskite and tune the energy level alignment between the perovskite/2,2',7,7'-tetrakis(N,N-di-(p-methoxyphenyl)amino)-9,9'-spirobifluorene (Spiro-OMeTAD) interface. X-ray photoelectron spectroscopy shows that with the insertion of 2FBTA-1 between perovskite and Spiro-OMeTAD, the metallic Pb0 defects and uncoordinated Pb2+ defects are well restricted. Consequently, the average PCE is distinctly improved from 18.4 ± 0.51 to 20.3 ± 0.40%. Moreover, the long-term stability of unencapsulated devices with 2FBTA-1 treatment under ambient conditions (relative humidity 40-60%) is effectively enhanced, retaining 87% of the initial efficiency after storage for 500 h.

Keywords: fluorine substituted; perovskite solar; level alignment; energy level; solar cells

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.