Interfacial reconstruction, emanating from the symmetry breaking at the interface, plays a key role in modulating the microstructures and properties of heterostructures. The appeal of revealing such a reconstruction resides… Click to show full abstract
Interfacial reconstruction, emanating from the symmetry breaking at the interface, plays a key role in modulating the microstructures and properties of heterostructures. The appeal of revealing such a reconstruction resides in the underlying mechanism connected to the function of heterostructures and new insights into designing a new interface device. Here, we demonstrate an interfacial reconstruction in a large lattice-mismatch system, h-LuFeO3/α-Al2O3 heterostructure. Combining the atomic-resolution imaging and spectroscopy of scanning transmission electron microscopy, the periodic variation of FeO immediate coordination and charge ordering of iron are revealed, indicating a strong lattice-charge coupling in the reconstruction. Such a reconstruction reported here suggests that polyhedral and electronic flexibility is important for the reconstruction formation and presents possibilities for further construction of more functional heterostructures.
               
Click one of the above tabs to view related content.