LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Aggregation-Induced Emission-Active Fluorescent Polymer: Multi-Targeted Sensor and ROS Scavenger.

Photo from wikipedia

A multi-functional polymer with aggregation-induced emission (AIE)-active salicylaldehyde azine (SA) functionality and reactive oxygen species (ROS)-responsive thioether groups is readily prepared via thiol-ene click polymerization of SA derivative diacrylate monomer,… Click to show full abstract

A multi-functional polymer with aggregation-induced emission (AIE)-active salicylaldehyde azine (SA) functionality and reactive oxygen species (ROS)-responsive thioether groups is readily prepared via thiol-ene click polymerization of SA derivative diacrylate monomer, poly(ethylene glycol) diacrylate, and 3,6-dioxa-1,8-octanedithiol. The obtained AIE-active polymer exhibited an unexpected strong emission in amide solvents compared to that in other common organic solvents that was dramatically decreased by adding a trace amount of water, suggesting that the polymer could be utilized as a water trace indicator in amide solvents. In the backbone, the PEG segments make the polymer well dispersed in water and the ROS-responsive thioether groups enable this polymer as a promising ROS scavenger, with embedded SA moieties as a fluorescent indicator for the hemolysis determination. Due to the ability of SA moieties to complex with Cu2+, this AIE polymer can also be utilized as a fluorescent sensor for selective Cu2+ detection in real-world water samples. Thus, this multi-functional polymer is anticipated to be well applied in biological and environmental applications.

Keywords: aggregation induced; polymer; ros scavenger; induced emission; emission

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.