LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dual pH- and Glutathione-Responsive CO2-Generating Nanodrug Delivery System for Contrast-Enhanced Ultrasonography and Therapy of Prostate Cancer.

Photo from wikipedia

Ultrasonography (US) contrast imaging using US contrast agents has been widely applied for the diagnosis and differential diagnosis of tumors. Commercial US contrast agents have limited applications because of their… Click to show full abstract

Ultrasonography (US) contrast imaging using US contrast agents has been widely applied for the diagnosis and differential diagnosis of tumors. Commercial US contrast agents have limited applications because of their large size and shorter imaging time. At the same time, the desired therapeutic purpose cannot be achieved by applying only conventional US contrast agents. The development of nanoscale US agents with US imaging and therapeutic functions has attracted increasing attention. In this study, we successfully developed DOX-loaded poly-1,6-hexanedithiol-sodium bicarbonate nanoparticles (DOX@HADT-SS-NaHCO3 NPs) with pH-responsive NaHCO3 and GSH-responsive disulfide linkages. DOX@HADT-SS-NaHCO3 NPs underwent acid-triggered decomposition of NaHCO3 to generate CO2 bubbles and a reduction of disulfide linkages to further promote the release of CO2 and DOX. The potential of DOX@HADT-SS-NaHCO3 NPs for contrast-enhanced US imaging and therapy of prostate cancer was thoroughly evaluated using in vitro agarose gel phantoms and a C4-2 tumor-bearing nude mice model. These polymeric NPs displayed significantly enhanced US contrast at acidic pH and antitumor efficacy. Therefore, the NaHCO3 and DOX-encapsulated polymeric NPs hold tremendous potential for effective US imaging and therapy of prostate cancer.

Keywords: co2; prostate cancer; contrast; therapy prostate

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.