LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Self-Propelled and Electrobraking Synergetic Liquid Manipulator toward Microsampling and Bioanalysis.

Photo by osmanrana from unsplash

Droplet manipulation is of paramount significance for microfluidics-based biochips, especially for bioanalytical chips. Despite great progresses made on droplet manipulation, the existing bioanalytical methods face challenges in terms of capturing… Click to show full abstract

Droplet manipulation is of paramount significance for microfluidics-based biochips, especially for bioanalytical chips. Despite great progresses made on droplet manipulation, the existing bioanalytical methods face challenges in terms of capturing minute doses toward hard-to-obtain samples and analyzing biological samples at low temperatures immediately. To circumvent these limitations, a self-propelled and electric stimuli synergetic droplet manipulator (SES-SDM) was developed by a femtosecond laser microfabrication strategy followed by post-treatment. Combining the inspiration from cactus and Nepenthes pitcher plants, the wedge structure with the microbowl array and silicone oil infusion was endowed cooperatively with the SES-SDM. With the synergy of the ultralow voltage (4.0 V) stimuli, these bioinspired features enable the SES-SDM to transport the droplet spontaneously and controllably, showing the maximum fast motion (15.7 mm/s) and long distance (96.2 mm). Remarkably, the SES-SDM can function at -5 °C without the freezing of the droplets, where the self-propelled motion and electric-responsive pinning can realize the accurate capture and real-time analysis of the microdroplets of the tested samples. More importantly, the SES-SDM can realize real-time diagnosis of excessive heavy metal in water by the cooperation of self-propulsion and electro-brake. This work opens an avenue to design a microsampling (5-20 μL) manipulator toward producing the minute samples for efficient bioanalysis and offers a strategy for microanalysis using the synergistic droplet manipulation.

Keywords: manipulator toward; bioanalysis; droplet; ses sdm; self propelled

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.