Capacity fading of Li-rich cathodes in the cycling process is mainly caused by the irreversible side reactions at the interface of electrode and electrolyte by reason of the lack of… Click to show full abstract
Capacity fading of Li-rich cathodes in the cycling process is mainly caused by the irreversible side reactions at the interface of electrode and electrolyte by reason of the lack of a corrosion resistant surface. In this work, isocyanate-related functional groups (-N═C═O groups and polyamide-like groups) were tightly bonded on the surface of Li-rich oxides through a urea decomposition gas heat-treatment. The surface isocyanate functionalization inhibits the side reaction of PF5 hydrolysis to give LixPFyOz and HF species at the surface of Li-rich materials in the cycle process. As compared to the untreated Li-rich sample U0, the samples with the spinel-like layer and isocyanate functionalized surface exhibited an enhanced cycle stability. The capacity retention of the treated sample U3 reached as high as 92.6% after 100 cycles at the current density of 100 mA/g, larger than 66.8% for the untreated sample. Even at a higher current density of 1000 mA/g, sample U3 gives a capacity retention of 81.7% after 300 cycles. The findings of this work reveal the importance of surface isocyanate functionalization in restraining the surface side reactions and also suggest an effective method to design Li-rich cathode materials with better electrochemistry performance.
               
Click one of the above tabs to view related content.