LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and Acid-Responsive Properties of a Highly Porous Vinylene-Linked Covalent Organic Framework.

Photo by sharonmccutcheon from unsplash

The recently emerging vinylene-linked covalent organic frameworks (VCOFs) stand out from other COFs with exceptional chemical stability and favorable light-emitting properties, promising sensing applications for acids/bases or in strong acidic/basic… Click to show full abstract

The recently emerging vinylene-linked covalent organic frameworks (VCOFs) stand out from other COFs with exceptional chemical stability and favorable light-emitting properties, promising sensing applications for acids/bases or in strong acidic/basic conditions. Here we systematically investigated the reversible color and fluorescent response of a VCOF functionalized with pyridyl groups to acids/pH. The COF was synthesized with a record surface area for VCOFs and shows reversible hydrochromic and acidochromic behaviors and concomitant fluorescence quenching. The mechanisms were probed with systematical experimental comparison with relevant COFs and model molecules in combination with orbital analysis. The response is related to significant electronic changes in the ground and photoexcited states as a result of protonation or hydrogen bonding at pyridyl sites. The COF in aqueous dispersion displays a reversible fluorescence transition with pH change, which follows the Hill equation for multisite protonation. The COF-modified test paper shows immediate and remarkable color change and fluorescence turn-off/on when alternately exposed to HCl and NH3 gases. The work illustrates the great potential of developing highly robust sensory COFs through the vinylene approach.

Keywords: vinylene; linked covalent; synthesis acid; vinylene linked; covalent organic; acid responsive

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.