LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Highly Stable Waterborne Luminescent Inks Based on MAPbBr3@PbBr(OH) Nanocrystals for LEDs and Anticounterfeit Applications.

Photo from wikipedia

Waterborne polymers are advantageous in terms of cost, convenience, sustainability, and environmental friendliness. As lead halide perovskite (LHP) nanocrystals suffer from fast degradation in the presence of water, it is… Click to show full abstract

Waterborne polymers are advantageous in terms of cost, convenience, sustainability, and environmental friendliness. As lead halide perovskite (LHP) nanocrystals suffer from fast degradation in the presence of water, it is challenging to encapsulate LHP nanocrystals in waterborne polymers. In this work, luminescent MAPbBr3@PbBr(OH) nanocrystals were synthesized via the aqueous grinding process in the presence of 2-methyl-imidazole (2-MIM) and oleylamime (OAm). 2-MIM triggers the formation of the PbBr(OH) matrix, and OAm acts as a size-control ligand to control the size of MAPbBr3@PbBrOH particles in the nanoscale range. Highly stable waterborne luminescent inks were successfully prepared by blending MAPbBr3@PbBr(OH) nanocrystals with waterborne polymers, including poly(vinylpyrrolidone), poly(vinyl acetate), and acrylate resins. Owning to the dual protection of the polymer matrix and PbBr(OH) to LHP quantum dots (QDs), the luminescent films exhibit excellent stability to the environment under thermal and light irradiation. The ink can be used as a phosphor to fabricate down-converting green and white light-emitting diodes (LEDs). Waterborne anticounterfeiting inks suitable for screen printing were prepared via formula tuning for the anticounterfeit purpose. The anticounterfeiting luminescent patterns can be screen printed on paper, cloth, and poly(ethylene terephthalate) (PET), with encryption and decryption of information being accurately and conveniently realized by switching UV irradiation.

Keywords: mapbbr3 pbbr; pbbr; pbbr nanocrystals; stable waterborne; highly stable; mapbbr3

Journal Title: ACS applied materials & interfaces
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.